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Abstract: West Texas Intermediate and Dubai/Oman crude oil price parameters. Brent and Dubai/Oman crude oil prices exhibit 

significant negative error-correction rates (-0.507 and -0.821), indicating a strong tendency to return to long-term equilibrium 

after short-term shocks. In contrast, West Texas Intermediate (WTI) shows a positive, though statistically insignificant, 

coefficient, suggesting divergence and poor integration with global oil prices. The diagnostic tests showed Brent and 

Dubai/Oman crude oil price inequality and non-normality, justifying the use of the VECH-GARCH model. VECH-GARCH 

estimates that exogenous shocks influence oil price swings (ARCH effects ranging from 0.026 to 0.105) and show strong 

stability (GARCH coefficients up to 0.965). Portmanteau and Q-Q diagnostic tests show that the model reflects conditional 

variance behaviour. Brent and Dubai/Oman adapt better to global market signals than West Texas Intermediate, which is 

distorted by regional factors. These findings highlight the need to select criteria, integrate volatility modelling into decision-

making, and implement region-specific market reforms for market participants, policymakers, and risk managers. Joint 

modelling of equilibrium correction and volatility transition provides a viable framework for understanding global oil pricing 

dynamics. 
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1. Introduction 

 

The Nigerian economy remains heavily dependent on crude oil, which constitutes the primary source of government revenue 

and export earnings. However, the market for Nigerian crude oil is increasingly plagued by high price volatility, inconsistent 

pricing behaviour, and weak transmission mechanisms to the broader financial and economic systems. This volatility, driven 

by global factors such as geopolitical tensions, OPEC+ decisions, and shifts in global demand, has introduced substantial 

uncertainty into Nigeria’s macroeconomic environment [3]. Compounding this instability are the country’s limited economic 

diversification and its underdeveloped financial system's capacity to absorb external shocks. Recent inconsistencies in price 

movements across major crude oil benchmarks such as Brent, WTI, and Dubai/Oman have raised concerns about the efficiency 

and effectiveness of Nigeria’s price discovery processes. These discrepancies impair policymakers, investors, and risk 
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managers' ability to anticipate and respond to oil market shocks, thereby limiting the efficacy of monetary and fiscal 

interventions. Furthermore, there is a dearth of empirical research that employs advanced econometric models, such as Error 

Correction Models (ECMs) and Multivariate GARCH models, to rigorously analyse these dynamics and their macroeconomic 

implications [11]. 

 

Simultaneously, Nigeria faces significant volatility in key macroeconomic indicators, including exchange rates, central bank 

interest rates, inflation, real GDP, and labour market variables, suggesting structural imbalances, policy inconsistencies, and 

external vulnerabilities [14]. These irregularities not only challenge the effectiveness of monetary policy but also diminish 

investor confidence and economic predictability [12]. Moreover, empirical features of the data, such as non-normality and the 

need for differencing to achieve stationarity, suggest the presence of underlying shocks and delayed policy effects that 

traditional macroeconomic models fail to capture adequately [15]. Structural estimations from MGARCH models further reveal 

that certain shocks, particularly those linked to government spending and technology, have persistent impacts on output and 

inflation. In contrast, others are transitory, thereby complicating both short-term stabilisation and long-term policy planning 

[13]. Considering these complexities, there is a pressing need to investigate the dynamics, transmission mechanisms, and 

persistence of monetary policy shocks in Nigeria [16]. A deeper understanding of oil price behaviour and its interaction with 

macroeconomic variables is crucial for designing more robust and responsive policy tools to enhance economic stability, foster 

sustainable growth, and improve macroeconomic governance. 

 

2. Methodology  

 

A time plot provides a graphical representation of a data set, with the x-axis representing time and the y-axis the variable being 

measured [7]. This visualisation helps to identify trends, seasonality, and cycles within the series. It is useful for recognising 

upward or downward trends over time; a rising line suggests increasing values, while a declining line indicates decreasing 

values. Seasonal patterns may also be visible in a time plot as repeated fluctuations at regular intervals. For example, if you 

plot monthly sales, you might see peaks every December. Also, the normality test is carried out using the Jarque-Bera test 

statistic. According to Ewing and Malik [6], the Jarque-Bera test is a joint test of skewness and kurtosis that examines whether 

a data series exhibits normality; it was developed by Su et al. [12]. It is defined as. 

 

X~
2   

N

6
[S2 +

(K−3)2

4
]          (1) 

 

Where S represents Skewness, K represents Kurtosis, and N represents the size of the macroeconomic variables used. The test 

statistics under the null hypothesis of a normal distribution have 2 degrees of freedom 2. When a distribution does not meet the 

normality assumption, Bollerslev et al. [2] suggested using multivariate GARCH with error distributions assumed to have fixed 

degrees of freedom.  Similarly, the Unit Root Test for stationarity is conducted using the Augmented Dickey-Fuller (ADF) test, 

which is commonly employed in time-series analysis to determine the order of integration of a series. Unit root test is very vital 

in time series analysis, and this will be done using the Augmented Dickey-Fuller (ADF) and Phillips-Perron Test (PPT). The 

unit root test assumes that a series follows a random walk. 

 

Yt = b1yt−1 + εt, Random walk        (2) 

 

Yt = b0 + b1yt−1 + εt, Random walk with drift       (3) 

 

Yt = b0 + b1yt−1 + b2t + εt, Random walk with drift and trend     (4) 

 

However, to enhance stationarity, we considered whether yt−1 is subtracted from the Right Hand Side (RHS) of each of 

equations 3.3 -3.17, we have; 

 

Yt − Yt−1 = b1Yt−1 − Yt−1 + εt, ΔYt = ϑYt−1 + εt, Random walk    (5) 

 

Yt − Yt−1 = b0 + b1Yt−1 − Yt−1 + εt,  ΔYt = b0 + ϑYt−1 + εt, Random walk with drift   (6) 

 

Yt − Yt−1 = b0 + b1Yt−1 − Yt−1 + b2t + εt,ΔYt = b0 + ϑYt−1 + b2t + εt, Random walk with drift and trend 

 

Where, b1Yt−1 − Yt−1 = (b1 − 1)Yt−1, let (b1 − 1) = ϑ, we have ϑYt−1 and Yt − Yt−1 = ΔYt 

 

2.1. The Null Hypothesis is tested as follows: 

 

For a pure random walk, we have;  
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ΔYt = ϑYt−1 + ∑ σiΔYt−1
ρ

i=1 + εt         (7) 

 

 H0: ϑ = 0 and therefore r = 1 against the alternative that HO1: ϑ < 0 and r < 1. Similarly, a Random walk with drift, 

we have  

 

ΔYt = b0 + ϑYt−1 + ∑ σiΔYt−1
ρ

i=1 + εt       (8) 

 

 H0: ϑ = 0 and therefore r = 1 against the alternative that HO1: ϑ < 0 and r < 1. Also, a random walk with drift and 

trend.   

 

ΔYt = b0 + ϑYt−1 + ∑ σiΔYt−1
ρ

i=1 + b2t + εt      (9) 

 

 H0: 𝜗 = 0 and therefore r = 1 against the alternative that HO1: 𝜗 < 0 and r < 1.  

 

The decision that follows will be considered if ‘𝑌𝑡it is found to be more negative and statistically significant at the 5 per cent 

level. We compare the parameter's t-statistic with the tabulated critical value. We reject the null hypothesis and accept the 

alternative, concluding that the series does not have a unit root. Conversely, if we accept the null hypothesis and reject the 

alternative, we conclude that the series has a unit root. After that, we determine the lag length. Differences refer to situations 

in which differencing is required to obtain stationarity. If the series is expressed as an AR process and the AR polynomial 

contains a unit root, that is, if one root of the autoregressive polynomial lies on the unit circle, e.g., for an AR(1), 𝛼 = 1, then 

differencing is necessary. According to Smyth and Narayan [13], this test is used to check if the 𝜀𝑡 obtained in the resulting 

model (3.9), the residuals violate the assumption of homoskedasticity and therefore, the regression is given as thus: 

 

εt
2   =  ∝0+ α1 εt+

2 + .    .  … … … … + αp εt−p
2 + μζ       (10)  

 

where α1. . . . . . . . . . . . . . . . . . . . . . . . . . . αp
 
are the coefficients of the regression and α0is considered the intercept of the ARCH model 

specified in (3.14). The hypothesis of the ARCH effect is given as: 
 

 

 H0: α1 = α2 =. . . . . . . . . . . . . . . . . . . = αp = o, there is no ARCH effect in the residuals under the null of the lagrange 

multiplier (LM) statistic is distributed asymptotically as x2(p) statistic against the alternative hypothesis. 

 H1: α1 ≠ 0for some i (ε1,2.............q) at least one variable has the presence of the ARCH effect. 

 

Deebom and Essi [3] noted that the number of observations times the R-squared (𝑛𝑅2) gives the joint significance of the test 

statistics with the q- lagged squared residuals with q degrees of freedom and its estimated probability value. Deebom and Essi 

[3] further explained that nR2 is tested against the X2(q) distribution, meaning that if nR2> (q), the result in the Table, then the 

null hypothesis will be rejected, and it is concluded that an ARCH effect is present. Conversely, where nR2<X2(q) is based on 

the results in the Table, then there is the absence of an ARCH effect in the residuals obtained from the ARMA model. The 

Vector Error Conditional Heteroscedasticity (VECH)-GARCH models allow the conditional covariance matrix of the 

dependent variables to follow an elastic dynamic structure [2]. In the case of the VECH, the conditional variance and covariance 

would each depend upon lagged values of all the variances and covariances and on lags of the squares of both error terms and 

their cross products. Suppose that there are four variables used in the model. The conditional covariance matrix is denoted Ht, 

and this would be 3 (3). Ht and VECH (Ht) are written in matrix form as follows:  

 

σi,t 
2 = M(i) + A1(i) ∗ ε1,t−1

2  *(ε1,t−1
2 )

1
+ B1(i) ∗ σ1,t-1

2  , εt/σt−1~N(0, Ht)    (11) 

 

where M(i), A1(i), and B1(i) are parameters of an indefinite matrix. The EViews form matrix representation of the Vector 

Error Conditional Heteroskedasticity (VECH)-GARCH is given as:  

 

M = [

M(1,1) M(1,2) M(1,3)

M(2,2) M(2,3)

M(3,3)

]     

   

A = [

A1(1,1) A1(1,2) A1(1,3)

A1(2,2) A1(2,3)

A1(3,3)

] 
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B = [

B1(1,1) B1(1,2) B1(1,3)

B1(2,2) B1(2,3)

B1(3,3)

]    

 

σt
2 = M + A1 ∗ εt ∗ εt

1 + B1 ∗ σt−1
2  

 

 M is an indefinite matrix. 

 A1 is an indefinite matrix* 

 B1 is an indefinite matrix* 

 

Variance and Covariance Equations: 

 

σ1,t
2 = M(1,1) + A1(1,1) ∗ εt−1

2 + B1(1,1) ∗ σt−1
2  

σ2,t
2 = M(2,2) + A1(2,2) ∗ εt−1

2 + B1(2,2) ∗ σt−1
2  

σ3,t
2 = M(3,3) + A1(3,3) ∗ εt−1

2 + B1(3,3) ∗ σt−1
2  

ρ1,2 = M(1,2) + A1(1,2) ∗ ε1,t−1 ∗ ε2,t−1 + B1(1,2) ∗ ρ1,2,t−1 

ρ1,3 = M(1,3) + A1(1,3) ∗ ε1,t−1 ∗ ε3,t−1 + B1(1,3) ∗ ρ1,3,t−1 

ρ2,3 = M(2,3) + A1(2,3) ∗ ε2,t−1 ∗ ε3,t−1 + B1(2,3) ∗ ρ2,3,t−1  

 

According to Liu et al. [14], the most common method for estimating the conditional covariance matrix in the MGARCH model 

is the quasi-maximum likelihood method. Assuming Ht(θ) is a positive definite N×N conditional covariance matrix of some 

N×1 residual vector εt, parameterised by the vector θ. Denoting the available information at time t by ft, we have 

 

εt−1[εt/ft−1] = 0           (12) 

 

εt−1[εtεt
1/ft−1] = Ht(θ)          (13) 

 

Generally, the conditional covariance matrix Ht(θ) is well specified based on a certain MGARCH model. Suppose there is an 

underlying parameter vector θ0 that one wants to estimate using a given sample of T observations. The quasi-maximum 

likelihood (QML) approach estimates θ0 by maximising the Gaussian log likelihood. 

 

log LT (θ) =
−N.T

2
Log(2Π) −

1

2
∑ Log/Ht/T

t=1 −
1

2
∑ Ξt

1Ht
−1Ξt

T
t=1      (14) 

 

One needs to note the assumption that the time series under consideration is stationary and that its residuals have a predefined 

conditional Gaussian distribution. The latter assumption can meanwhile provide us with hints on how to assess the adequacy 

of the established MGARCH model.  

 

3. Results 

 

The Preliminary Tests specified in the methodology include; time plot, the descriptive statistics for both raw and return on stock 

market prices, the correlation analysis between raw and returns on crude oil price benchmarks, the unit test on raw and return 

on stock market prices, the plots of the returns on stock market prices in three major crude oil price markets, the cointegration 

analysis of the returns on stock market prices using trace and maximum eigenvalue and the lagged length specifications test. 

The time plot of weekly crude oil prices from 1990 to 2024 shows trends for three key variables: Brent (COBRET), Dubai/Oman 

(COD), and WTI (COWTI).  

 

All three exhibited an overall upward trajectory with significant volatility associated with major global events. Prices remained 

relatively stable in the 1990s but diverged after 2000, when WTI was consistently higher, reflecting U.S.-specific market 

conditions. Notable peaks occurred around 2008 and 2011-2014 due to the global financial crisis and geopolitical tensions, 

followed by a sharp decline in 2020 caused by the COVID-19 pandemic. Prices rose partially afterwards, albeit unevenly. The 

plot highlights strong inter-movements across benchmarks, the interconnectedness of the global oil market, and the influence 

of regional factors and macroeconomic shocks (Figure 1). 
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Figure 1: Time plot of weekly crude oil price in Brent blend, Dubai/Oman, and WTI 

 

Descriptive statistics for the raw and returns of stock market prices were estimated to test the normality of the series; the results 

are shown in Table 1. 

 

Table 1: Descriptive statistics of the raw and returns on stock market prices 

 

 COBRT WTI COD 

Mean 971 170 108. 

Median 961 166 104. 

Maximum 123 212. 146. 

Minimum 765 144. 866 

Std. Dev. 107 153 131 

Skewness 0.335 0.683 0.792 

Kurtosis 2.087 2.654 2.640 

Jarque-Bera 96.065 148.923 197.233 

Probability 0.000 0.000 0.000 

Sum 1.75E+09 3.06E+09 1.94E+09 

Sum Sq. Dev. 2.06E+13 4.23E+13 3.09E+13 

Observations 1798 1798 1798 

 

Table 1 contains the results of descriptive statistics of the returns and raw on weekly Crude oil prices in Brent Blend (COBRT), 

West Texas Intermediate(WTI), and Dubai/Oman. The mean values of the crude oil price series indicate that Brent Blend 

(COBRT) averaged 971, WTI (WTI) averaged 170, and Dubai/Oman (COD) averaged 108, reflecting significant price 

differences across the benchmarks. This implies that Dubai/Oman crude oil prices exhibit the greatest volatility, making them 

less stable than Brent Blend and WTI. Similarly, the standard deviation of the crude oil prices, Brent Blend (107), has the 

lowest price volatility, while WTI (153) and Dubai/Oman (131) exhibit greater fluctuations. For the crude oil price series, the 

skewness values are positive (COBRT = 0.335, WTI = 0.683, and COD = 0.792), indicating a slight rightward skew, with 

prices tending to experience more frequent small increases than decreases. The crude oil price series, however, exhibits lower 

kurtosis values (COBRT = 2.087, WTI = 2.654, and COD = 2.640), indicating distributions closer to normal, with a lower 

likelihood of extreme price fluctuations.  

 

The Jarque-Bera statistics for all series are significantly high, with p-values of 0.000, indicating strong rejection of the null 

hypothesis of normality. This confirms that the return series does not follow a normal distribution, with implications for risk 

modelling and forecasting, as extreme price movements occur more frequently than predicted by standard normal-based 

models. The lack of normality suggests that financial models relying on normality assumptions may not adequately capture the 

behaviour of crude oil returns and should be adjusted accordingly. Therefore, the return series for crude oil exhibits mild 

negative and positive trends, with Dubai/Oman returns showing the highest volatility. The return distributions are nearly 

symmetric but exhibit slight excess kurtosis, leading to a higher frequency of extreme price movements. The strong rejection 

of normality indicates that more advanced econometric techniques, such as GARCH models or heavy-tailed distributions, may 

be more appropriate, as suggested by studies such as those by Deebom and Tuaneh [4]. GARCH models may be necessary for 

accurate volatility modelling and risk management. However, crude oil price series display greater stability in their 
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distributions, though they still exhibit some rightward skew. Similarly, correlation analysis of the raw and returns on stock 

market prices was estimated, and the results are shown in Table 2.  

 

 
 

Figure 2: Time plot of weekly returns on crude oil prices, Brent Blend, West Texas Intermediate (WTI), and Dubai/Oman 

 

Figure 2 presents a time-series plot of weekly returns for three major crude oil benchmarks. The plot enables visual comparison 

of volatility patterns, trends, and cyclical behaviour among Brent, WTI, and Dubai/Oman over the selected period. From Figure 

2 above, it was found that volatility clustering is present in the transformed series.  

 

Table 2: Test for cointegration of stock market prices 

 

Unrestricted Cointegration Rank Test 

(Trace) 

Unrestricted Cointegration Rank Test 

(Maximum Eigenvalue) 

Hypothesized  Trace 0.05   Max-Eigen 0.05  

No. of CE(s) Eigenvalue Statistic Critical 

Value 

Prob.**  Eigen 

Value 

 Statistic  Critical 

Value 

 Prob.** 

r= 0  0.126  458.606  29.797  0.000  0.126  241.495  21.132  0.000 

r≤ 1  0.089  217.111  15.495  0.000  0.089  166.983  14.265  0.000 

r≤ 2  0.028  50.129  3.841  0.000  0.028  50.129  3.841  0.000 

r≤ 3  0.126  458.606  29.797  0.000  0.126  241.495  21.132  0.000 

 

The results of the cointegration test indicate the presence of long-run equilibrium relationships among stock market prices, as 

shown in Table 4. The Trace test and Maximum Eigenvalue test both reject the null hypothesis of no cointegration at all levels 

(r = 0, r ≤ 1, r ≤ 2, and r ≤ 3), as the computed test statistics exceed the respective critical values at the 5% significance level. 

At r = 0, the trace statistic (458.606) is far greater than the critical value (29.797), with a probability of 0.000, confirming the 

rejection of the null hypothesis of no cointegrating equation. Similarly, the maximum eigenvalue statistic (241.495) exceeds 

the critical value (21.132), further validating the existence of a long-run relationship. This pattern continues for r ≤ 1 and r ≤ 2, 

reinforcing the robustness of the cointegration findings. The presence of cointegration implies that despite short-term 

fluctuations, stock market prices move together over time, suggesting a stable equilibrium relationship. This result aligns with 

prior studies in financial markets, such as Deebom and Tuaneh [4], which demonstrate that financial and commodity markets 

often exhibit long-term integration despite short-run volatility. The implications of these findings are significant for investors 

and policymakers, as they suggest that crude oil prices in the stock market are interdependent in the long run, meaning price 

movements in one market could influence the other.  

 

Table 3: Results of the error correction model 

 

Variables Cointegration 

Rank 

ECT Residuals Heteroscedasticity 

Test 

VEC Residual Normality Tests 

COBRT 3 -0.507(0.03) 543.658 F(20,000) 42.618 (df=3),(0.000) 

WTI 3 0.658(0.060) 543.658 F (20, 0.415) 40.900(df=3), ( 0.100) 

COD 3 -0.821(0.072) 543.658 F (20, 0.000) 42.618 (df=3), (0.000) 
Note: The Value in parentheses is the Degree of Freedom and p-value.  
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The error correction model (ECM) results presented in Table 3 provide insight into the speed and direction of crude oil price 

yield adjustments – specifically Brent (COBRT), West Texas Intermediate (WTI), and Dubai/Oman (COD) – towards long-

term equilibrium after short-term shocks. The error correction (ECT) expression represents the percentage of imbalance in the 

previous period that was corrected in the current period. For COBRT, the ECT is -0.507 with a p-value of 0.03, which is 

statistically significant at the 5% level. This means that about 50.7% of any imbalances from the long-term relationship will be 

corrected in the coming period, indicating a strong, statistically significant adjustment rate toward balance for Brent. For WTI, 

ECT is 0.658 with a p-value of 0.060. This coefficient is marginally positive and insignificant at the 5% level, but becomes 

significant at the 10% level. However, positive ECT does not make sense in the context of ECM, as it refers to divergence 

rather than convergence, meaning that WTI does not respond in a theoretically consistent way to deviations from long-term 

equilibrium, possibly due to structural or regional market factors that delay adjustment.  

 

For COD, the ECT is -0.821 with a p-value of 0.072. Such a large negative value indicates a rapid adjustment rate - 82.1% of 

the deviation is corrected in the subsequent period - but the statistical significance is only marginal at the level of 10%. While 

this result indicates a strong long-term return for Dubai/Oman, the reliability of the estimate is limited by a p-value just above 

the traditional 5% threshold. Diagnostic controls provide more clarity on the statistical characteristics of residues in the model. 

The remaining covariance test yields an F statistic of 543,658 across all three equations, indicating conditional non-

heteroskedasticity in the error terms. This suggests that residue variability is not constant over time, violating the assumption 

of homogeneity and potentially affecting the efficiency and reliability of parameter estimates. This justifies the need for 

variability modelling techniques that can explicitly account for time-varying variance, such as the VECH-GARCH model. 

Natural tests of VEC residue also show mixed results. For COBRT and COD, the chi-square statistic is 42.618 with a p-value 

of 0.000, indicating strong rejection of the null hypothesis of a normally distributed waste distribution. This deviation from 

normality can lead to biased standard errors and invalid statistical inference if left uncorrected. For WTI, the test statistics are 

40,900 with a p-value of 0.100, indicating that the tailings are normally distributed compared to other series.  

 

This relative normality makes WTI results less vulnerable to distribution problems, although positive ECT continues to 

undermine its interpretation in the context of long-term adaptation. The implications of these results for estimating the VECH-

GARCH model are significant. The presence of heterogeneity and unnaturalness in COBRT and COD residues suggests that 

simple linear models may not adequately capture the volatility dynamics of these series. The VECH-GARCH framework, which 

allows for time-varying variance and volatility, is essential for accurate modelling of this series. It helps overcome the 

limitations observed in ECM diagnoses by explicitly modelling conditional covariance and capturing the common movement 

in fluctuations across oil price parameters. The validity of the VECH model estimate is reinforced by evidence from the ECM 

suggesting meaningful long-term equilibrium relationships (especially for COBRT and COD) and the need for a more flexible 

structure to capture the underlying dynamics of variance. This is one of the properties that make Multivariate GARCH models 

suitable for the study. Therefore, the matrix representation of the results of the Vector Error Conditional Heteroscedasticity 

(VECH)-GARCH is presented as thus: 

 

M = [

0.090(0.000) 0.046(0.000) 0.006(0.003)

0.023(0.00) 0.003(0.006)

0.001(0.071)

]    

 

A = [

0.105(0.000) 0.105(0.000) 0.057(0.000)

0.104(0.000) 0.054(0.000)

0.026(0.006)

] 

 

B = [

0.659(0.000) 0.703(0.000) 0.810(0.000)

0.748(0.000) 0.849(0.000)

0.965(0.000)

]    

 

Note: The value in the parentheses is the estimated p-value. Alternatively, the model is represented in equation form as: 

  

σi,t 
2 = M + A1 ∗ εi,t−1

2  + B1 ∗ σi,t-1
2   

 

Variance Equation: 

 

σ1,t
2 = 0.090 + 0.105 ∗ εt−1

2 + 0.659 ∗ σ1,t−1
2  

σ2,t
2 = 0.024 + 0.104 ∗ εt−1

2 + 0.748 ∗ σ2,t−1
2  

σ3,t
2 = 0.001 + 0.026 ∗ εt−1

2 + 0.965 ∗ σ3,t−1
2  
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Covariance Equation: 

 

ρ1,2 = 0.046 + 0.105 ∗ ε1,t−1 ∗ ε2,t−1 + 0.703 ∗ ρ1,2,t−1 

ρ1,3 = 0.006 + 0.057 ∗ ε1,t−1 ∗ ε3,t−1 + 0.810 ∗ ρ1,3,t−1 

ρ2,3 = 0.003 + 0.054 ∗ ε2,t−1 ∗ ε3,t−1 + 0.849 ∗ ρ2,3,t−1 

 

The results of the Vector Error Correction Conditional Heteroscedasticity (VECH)-GARCH model provide insights into stock 

price volatility, particularly by showing how shocks affect market fluctuations over time. The estimated coefficients in the M, 

A, and B matrices indicate the nature of volatility persistence and the market's reaction to past disturbances. The M matrix, 

representing the constant term in the variance equation, contains mostly significant coefficients, with values ranging from 0.001 

to 0.090. The significance of most of these values (p-values close to 0.000) suggests that the underlying volatility level is not 

negligible, though relatively small compared to the time-dependent components. The low value of 0.001 (p=0.071) implies that 

some components of the conditional variance may be less deterministic and more reliant on external shocks. Compared with 

previous VECH-GARCH studies, such as Engle and Kroner [5], which also found the constant term to be relatively small, this 

confirms that market-driven fluctuations often overshadow the intrinsic market volatility. The A matrix, which captures the 

ARCH effects, measures the short-term impact of past shocks on current volatility. The estimated coefficients range from 0.026 

to 0.105, all of which are highly significant (p-values of 0.000). These values indicate that market volatility reacts strongly to 

recent disturbances, reinforcing the idea of short-term market instability. Similar findings were reported by Bollerslev et al. [2] 

and Engle and Kroner [5], who found that ARCH parameters were significant in explaining sudden market spikes.  

 

The presence of high ARCH effects in this study suggests that unanticipated events, such as economic announcements or 

geopolitical shocks, lead to immediate fluctuations in stock prices. The B matrix, capturing the GARCH effects, reflects the 

long-term persistence of volatility. The coefficients are quite large, ranging from 0.659 to 0.965, and all are statistically 

significant at the 1% level. The highest value of 0.965 implies that past volatility has a prolonged impact, leading to persistent 

fluctuations over time. This aligns with previous studies, such as Nelson [10] and Ling and McAleer [9], which found that 

strong GARCH effects indicate strong volatility clustering, suggesting that market turbulence tends to persist over extended 

periods. The findings suggest that market participants should anticipate prolonged volatility following major shocks, with 

implications for risk management strategies. Compared with previous studies on the VECH-GARCH model, the present 

findings reinforce the well-established pattern of short-term reactivity and long-term persistence in financial markets. The 

implications are significant for investors and policymakers. High ARCH effects suggest that short-term traders may exploit 

market shocks, while strong GARCH effects indicate that long-term investors should prepare for extended periods of market 

uncertainty. Moreover, these findings highlight the need for improved hedging strategies and portfolio diversification, as market 

fluctuations are not only immediate but also long-lasting (Table 4). 

 

Table 4: Estimation results for portmanteau tests 

 

Lags Q-Stat Prob. Adj Q-Stat Prob. Df 

1  22.93649  467.1203  0.2542  467.3803 16 

2  46.25668  745.1349  0.1122  745.7044 32 

3  59.27973  909.5582  0.0458  910.4025 48 

4  91.70694  1083.649  0.1171  1084.882 64 

5  100.8715  1197.526  0.0105  1199.076 80 

6  113.1738  1266.937  0.0466  1268.719 96 

7  122.4939  1313.011  0.0896  1314.973 112 

8  155.4524  1377.284  0.1931  1379.534 128 

9  172.4273  1430.148  0.0322  1432.663 144 

10  192.1867  1482.844  0.0321  1485.654 160 

11  204.9934  1525.466  0.0225  1528.539 176 

12  223.8200  1571.528  0.0352  1574.910 192 
Source: Researcher’s Analysis using Eviews Version 10.  

 

The Portmanteau test results provide insight into whether residual autocorrelation is present in the multivariate time-series 

model. Specifically, the test examines the null hypothesis that there is no automatic correlation in the residue until a specific 

delay order is reached. In the results displayed, both Q statistics and adjusted Q statistics are reported for each delay (1-12), 

along with p-values and degrees of freedom. A higher p-value (usually greater than 0.05) indicates that the null hypothesis is 

not rejected, meaning there is no significant subjective correlation at this delay length. At delay 1, the p-values (0.2542 for the 

adjusted Q case) are higher than the significance level of 5%, indicating that the residues at this delay are not sequentially 

linked. As the delay order increases, the results fluctuate. For example, in layer 3, the value p drops to 0.0458, suggesting the 
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presence of autocorrelation at the 5% level. However, other delays, such as 4, 6, 7, and 8, show p-values above 0.05 (0.1171, 

0.0466, 0.0896, and 0.1931, respectively), indicating mixed evidence of self-correlation across different delays. The p-values 

are much smaller at layers 5 (0.0105), 9 (0.0322), 10 (0.0321), and 11 (0.0225), suggesting intermittent self-correlation in 

system residues at these specified delay lengths. However, although some delays are significant, the majority do not consistently 

reject the null hypothesis across all periods. Therefore, the general implication is that residual autocorrelation is systematically 

absent in the model, suggesting an acceptable level of model adequacy with respect to residual behaviour. These results support 

the reliability of the VECH-GARCH model used in the study. 

 

 
 

Figure 3: QQ plot on the VECH-GARCH model to determine the adequacy of the model 

 

The accompanying QQ chart (Figure 3) serves as a visual diagnosis to assess the nature of the remains. If the residues are 

normally distributed, the points in the QQ chart will closely follow the 45° reference line. Deviation from this line means 

unnaturalness, which can affect inference based on standard statistical tests. Therefore, the Portmanteau test and the QQ chart 

together provide strong evidence of model adequacy, helping verify the suitability of the VECH-GARCH framework for 

capturing the conditional heterogeneity and dynamic behaviour of the underlying data series. 

 

4. Discussion of Results  

 

Findings from the Error Correction Model (ECM) provide valuable insights into the dynamics of crude oil price standards – 

Brent, West Texas Intermediate, and Dubai/Oman– in response to short-term disruptions and their tendencies to return to long-

term equilibrium. ECM coefficients represent how quickly each series corrects deviations from equilibrium. For Brent Blend, 

the Error Correction Term (ECT) of -0.507 is statistically significant at the level of 5% (p = 0.03), suggesting that Brent is 

returning quickly, with about 50.7% correction of the imbalance in the next period. This is in line with studies such as Aloui 

and Jammazi [1], who found that Brent crude prices rapidly adapt to global shocks due to their status as a global benchmark. 

Conversely, the West Texas Intermediate is 0.658 (r = 0.060), which shows that the estimate is not only statistically insignificant 

at the 5% level but also incorrectly signed, indicating divergence rather than convergence. This means that West Texas 

Intermediate does not respond in a theoretically consistent way to imbalance. This finding may reflect regional distortions or 

infrastructure bottlenecks in the U.S. oil market, consistent with Kilian [8], who noted that West Texas Intermediate could be 

split locally from global crude markets under certain conditions. Also, for crude oil prices in Dubai/Oman, the ECT is -0.821 

(p = 0.072), indicating a very fast adjustment (82.1%) of the balance, albeit only significant at the 10% level.  

 

The large volume of the adjustment supports evidence from studies such as Hammoudeh et al. [7], which highlight the high 

sensitivity of Middle Eastern crude oil standards to global demand and geopolitical conditions. Diagnostic tests provide 

additional clues regarding the adequacy of the model. Residual invariance was detected across the three equations (F = 543.658), 

indicating variable volatility over time, violating the assumption of constant variance. Also, tests of the normality of the 

residuals confirm the presence of abnormal distributions in Brent and Dubai/Oman (p = 0.000), whereas WTI shows only an 

approximate normal distribution (p = 0.100). These findings support the need for GARCH-type models to capture better the 

stylised features of financial time series, including volatility aggregation and heavy tails. The VECH-GARCH model estimate 

reveals deeper insights into the transmission of volatility. The fixed matrix (M) captures the underlying volatility levels. It is 

relatively small, consistent with Engle and Kroner [5], suggesting that the main source of volatility arises from shocks and 

stability effects rather than constant volatility levels. The ARCH(A) matrix, with significant coefficients ranging from 0.026 to 

0.105, indicates a strong short-term response to shocks. This aligns with the findings of Bollerslev et al. [2], who asserted that 

energy markets respond quickly to unexpected macroeconomic and geopolitical developments. More importantly, the 

GARCH(B) coefficients, ranging from 0.659 to 0.965, indicate strong volatility persistence, confirming the findings of Nelson 
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[10] and Ling and McAleer [9]. These significant values suggest that shocks have long-term effects, causing volatility to persist 

over long periods – a critical pattern for investors, policymakers, and risk managers.  

 

The results of the Portmanteau test further confirm the model's structural correctness. While some delays (e.g., 3, 5, 9, 10, and 

11) show autocorrelation at the 5% level (p< 0.05), most delays indicate no significant autocorrelation in the residues. This 

supports the adequacy of the VECH-GARCH model for sequential disengagement, a prerequisite for modelling strong 

multivariate time series. The Q-Q scheme confirms these results by assessing the distributional properties of the residues. 

Deviations from the 45-degree baseline highlight the abnormality, especially for crude oil prices in Brent and Dubai/Oman, 

supporting the need for conditionally heterogeneous models. The combination of ECM and VECH-GARCH diagnostics 

suggests that Brent and Dubai/Oman exhibit meaningful long-term equilibrium behaviour and predictable volatility patterns. 

In contrast, West Texas Intermediate behaviour is less stable and is likely to be affected by local supply and demand constraints. 

Compared to previous empirical work, this study reaffirms the asymmetric and region-specific nature of crude oil volatility, 

consistent with Ewing and Malik [6], who found structural differences in volatility dynamics between oil parameters. 

Furthermore, the results expand the literature by integrating the speed of equilibrium adjustment and volatility extension into a 

unified framework, emphasising both short-term market interaction and long-term stability. 

 

5. Conclusion  

 

The study concluded that crude oil price standards show distinct adjustment mechanisms and volatility dynamics, reinforcing 

the heterogeneous nature of global oil markets. Brent crude and Dubai/Oman showed a large and theoretically consistent return 

to long-term equilibrium after short-term deviations, with Brent retracement correcting 50.7% and pushing 82.1% of the 

previous imbalance. These results underscore the dominant roles of Brent and Dubai/Oman in determining global oil prices, as 

their prices adjust quickly to reflect market fundamentals and shifting global demand. However, the West Texas Intermediate 

index shows a positive, statistically insignificant error correction term, indicating a deviation from equilibrium that may stem 

from regional supply bottlenecks, infrastructure constraints, or local market segmentation. This divergence challenges the 

effectiveness of West Texas Intermediate as a responsive benchmark in international price-fixing. Volatility diagnostics from 

the VECH-GARCH model also reveal that while baseline volatility is relatively modest, short-term shocks (ARCH effects) and 

long-term stability (GARCH effects) are strongly evident. These results suggest that market volatility is strongly influenced by 

both direct events and prolonged uncertainty, consistent with Nelson's [10] empirical results.  

 

The property of volatility's long memory (B values up to 0.965) indicates that once shocks occur, their effects persist in the 

market, affecting investor behaviour and policy expectations over time. The implications of these findings for determining the 

crude oil market are multifaceted. First, the rapid adjustment rates of Brent crude and Dubai/Oman reinforce their centrality in 

global pricing and confirm their reliability in reflecting global market fundamentals. Policymakers and market analysts can rely 

more confidently on these criteria for decision-making and policy formulation. Second, West Texas Intermediate's failure to 

comply with the dynamics of equilibrium adjustment points to the need to reassess its role in global oil pricing, particularly 

during periods of regional market pressure. Third, the continuous volatility patterns revealed by the VECH-GARCH model 

highlight the importance of integrating volatility modelling into risk assessment and forecasting. For investors, these dynamics 

underscore the need for strong hedging and diversification strategies. In contrast, for regulators and policymakers, the results 

underscore the need to enhance transparency, infrastructure development, and market integration, particularly for benchmarks 

such as West Texas Intermediate. The study contributes to understanding oil price behaviour by illustrating how adjustment 

speeds and continued volatility vary across reference criteria. It emphasises that global crude oil markets are characterised by 

asymmetrical and structural inequalities that affect price formation and risk exposure, necessitating divergent approaches to 

forecasting, investment, and political interventions. 
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